
B Supplementary Appendix (not for publication)

This supplementary appendix provides ommitted proofs and establishes results to complement the

main analysis.

B.1 Omitted proofs

B.1.1 Proof of Lemma 3

Twice continuous di↵erentiability follows directly from the fact that D(⇡, ⇠), µ
h,t

and ⇡
t,u

are all twice
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First derivative with respect to t: D
t
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which is bounded over the relevant range, �⇥ [⇠, ⇠], because: µ0
h,t

= �e��t is bounded; (1�µ
h,u

)/(1�

µ
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over the compact [0, 1]⇥ [⇠, ⇠] and so are bounded as well.

First derivative with respect to u: D
u

(t, u, ⇠). We have:
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which is bounded over the relevant range for the same reasons as above.
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which is bounded over the relevant range for the same reasons as above.
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Second derivative with respect to (t, t). It is equal to:
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which is bounded over the relevant range for the same reason as above and after noting that µ0
h

(t)/ [1� µ
h

(t)] =

�.

Second derivative with respect to (t, u). It is equal to:

D

t,u

(t, u, ⇠) = �µ0
h,t

µ0
h,u

1� µ
h,u

⇥

1� µ
h,t

⇤

2

D
⇡,⇡

(⇡
t,u

, ⇠),

which is bounded over the relevant range for the same reasons as above.
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which is bounded over the relevant range for the same reasons as above.

Second derivative with respect to (u, u): D
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Second derivative with respect to (u, ⇠): D
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Second derivatives with respect to (⇠, ⇠): D
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(t, u, ⇠) is bounded away from zero. This follows directly from the formula for D
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B.1.2 Proof of Lemma 6

First, note that, by an application of the Implicit Function Theorem, the holding cost ⇠
u

(⇢) is contin-

uously di↵erentiable, with a derivative that can be written
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where the second line follows after noting that D(u, u, ⇠?
u

) = 0 by definition of ⇠?
u

and after plugging

in the approximation of Proposition 5.

Turning to B
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since, by Lemma 3, D(t, u, ⇠) has bounded first and second derivatives. Given that D
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Taken together, we obtain that
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B.1.3 Proof of Lemma 7

Since D(⇡, ⇠) is uniformly continuous over [0, 1] ⇥ [⇠, ⇠], and since ⇠
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B.1.4 Proof of Lemma 8

One easily verifies that m(0, ") = 0 and lim
q!1m(q, ") = 1. Clearly, m(q, ") is continuous over

(q, ") 2 [0,1) ⇥ (0,1), so the only potential di�culty lies in proving continuity at all points (q, 0).
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Next, consider the first and second derivatives of m(q, "):
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Clearly, m(q, ") is increasing and concave, and three times continuously di↵erentiable over (q, ") 2

[0,1)⇥ (0,1). The limits of the first and second derivative follow from similar arguments as above.

B.1.5 Proof of Lemma 10

The continuity of Q
u

is obvious. That Q
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)1+1/� follows from the definition of

Q
u

, and Q
T

f

= 0 follows by definition of T
f

. Next, after taking derivatives with respect to u we find

that sign
h

Q
0
u

i

= sign [F
u

], where:

F
u

⌘(s� µ
h,u

)



(1� µ
h,0

)1+1/� +

Z

u

0

⇢e⇢t(1� µ
h,t

)1+1/�dt

�

� (1� µ
h,u

)1+1/�



s� µ
h,0

+

Z

u

0

⇢e⇢t(s� µ
h,t

)dt

�

, (56)

is continuously di↵erentiable. Taking derivatives once more, we find that sign [F 0
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is continuously di↵erentiable. Now suppose that Q
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Thus,
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Now note that G
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expression in Result R1 for the sign of F 0
u
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u
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u. Therefore, F
u
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B.1.6 Proof of Lemma 12

To prove that Q
u

is continuously di↵erentiable except in T
1
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2

, we apply the Implicit Function
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and is continuous. The partial derivative with respect to Q is
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where we used that  
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B.1.7 Proof of Lemma 13

For u 2 (T
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u
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Replacing into equation (42) for Q0
u

of Lemma 12 , one obtains that:
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As noted above, Q
u

and thus X
u

changes sign at least once over (T
1

, T
2

). Now, for any u
0

such that

X
u0 = 0, we have Q0

u0
= 0 and, given (60),  0

u0
= 0. Taking the derivative of X

u

at such u
0

, and using

X
u0 = 0, leads:

sign
⇥

X 0
u0

⇤

= sign

2

4

�1 +

✓

1 +
1

�

◆

 

1� µ
h,u0

1� µ
h, 

u0

!

1/�

3

5 = sign [Y
u0 ] ,

where Y
u

⌘ �1 +

✓

1 +
1

�

◆

s� µ
h,u

1� µ
h,u

,

where the second equality follows by using X
u0 = 0. Now take u

0

to be the first time X
u

changes

sign during (T
1

, T
2

). Since X
u0 = 0, X

u

strictly positive to the left of u
0

, and X
u

strictly negative to

the right of u
0

, we must have that X 0
u0

 0. Suppose, then, that X
u

changes sign once more during

(T
1

, T
2

) at some time u
1

. The same reasoning as before implies that, at u
1

, X 0
u1

� 0. But this is

impossible since Y
u

is strictly decreasing.

B.1.8 Proof of Lemma 14

Proof of the limit of T
f

(⇢), in equation (43). Recall that T
f

(⇢) solves E
⇥

µ
h,⌧

u

⇤

= s and that

T
f

(⇢) � T
s

. Note also that Pr(⌧
u

 t) = min{e�⇢(u�t), 1}. Therefore, a increases in u and ⇢ induce

first-order stochastic dominance shift. Since µ
h,t

is increasing, it follows that E
⇥

µ
h,⌧

u

⇤

is strictly

increasing in u and ⇢, and therefore that T
f

(⇢) is strictly decreasing in ⇢. Thus, T
f

(⇢) admits a limit

T
f

(1) as ⇢ ! 1. Since T
f

(⇢) is greater than the limit, and since E
⇥

µ
h,⌧

u

⇤

is increasing in u, we

have: E
⇥

µ
h,⌧

u

⇤

 s for u = T
f

(1). Taking the limit as ⇢ ! 1 we find that µ
h,T

f

(1)

 s so that

T
f

(1)  T
s

. Since T
f

(⇢) � T
s

, the result follows.

Proof of the first–order expansion, in equation (44). Let

f(t, ⇢) ⌘ (1� µ
h,t

)min
�

(1� µ
h,t

)1/�Q
u

(⇢), 1
 

+ µ
h,t

� s. (61)

By its definition, Q
u

(⇢) solves: E [f(⌧
u

, ⇢)]. Note that, for each ⇢, f(t, ⇢) is continuously di↵erentiable

with respect to t except at t =  
u

(⇢) such that (1� µ
h (⇢)

)1/�Q
u

(⇢) = 1. Thus, we can integrate the

above by part and obtain:

0 =

Z

u

0

⇢e�⇢(u�t)f(t, ⇢) dt = f(u, ⇢)�

Z

u

0

e�⇢(u�t)f
t

(t, ⇢) dt, (62)

where f
t

(t, ⇢) denotes the partial derivative of f(t, ⇢) with respect to t. Now consider a sequence
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of ⇢ going to infinity and the associated sequence of Q
u

(⇢). Because Q
u

(⇢) is bounded above by

(1 � µ
h,u

)�1/�, this sequence has at least one accumulation point Q
u

(1). Taking the limit in (62)

along a subsequence converging to this accumulation point, we obtain that Q
u

(1) solves the equation

(1� µ
h,u

)min{(1� µ
h,u

)1/�Q
u

(1), 1}+ µ
h,u

� s = 0.

whose unique solution is Q
u

(1) = (s� µ
h,u

)/(1� µ
h,u

)1+1/�. Thus Q
u

(⇢) has a unique accumulation

point, and therefore converges towards it. To obtain the asymptotic expansion, we proceed with an

additional integration by part in equation (62):

0 =f(u, ⇢) +
1

⇢
f
t

(0, ⇢)e�⇢u +
1

⇢

Z

u

0

f
tt

(t, ⇢)e�⇢(u�t) dt

+
1

⇢
e�⇢(u� u

(⇢))

⇥

f
t

( 
u

(⇢)+, ⇢)� f
t

( 
u

(⇢)�, ⇢)
⇤

.

where the term on the second line arises because f
t

is discontinuous at  
u

(⇢). Given that Q
u

(⇢)

converges and is therefore bounded, the third, fourth and fifth terms on the first line are o(1/⇢). For

the second line we note that, since Q
u

(⇢) converges to Q
u

(1),  
u

(⇢) converges to  
u

(1) such that

(1� µ
h 

u

(1)

)1/�Q
u

(1) = 1. In particular, one easily verifies that  
u

(1) < u. Therefore e�⇢(u� u

(⇢))

goes to zero as ⇢! 1, so the term on the second line is also o(1/⇢). Taken together, this gives:

0 = f(u, ⇢)�
1

⇢
f
t

(u, ⇢) + o

✓

1

⇢

◆

. (63)

Equation (44) obtains after substituting in the expressions for f(u, ⇢) and f
t

(u, ⇢), using that µ0
h,t

=

�(1� µ
h,t

).

Proof of the convergence of the argmax, in equation (45). First one easily verify that Q
u

(1)

is hump–shaped (strictly decreasing) if and only if Q
u

(⇢) is hump–shaped (strictly decreasing). So if
s�µ

h,0

1�µ

h,0


�

1+�

, then both Q
u

(⇢) and Q
u

(1) are strictly decreasing, achieve their maximum at u = 0,

and the result follows. Otherwise, if
s�µ

h,0

1�µ

h,0
> �

1+�

, consider any sequence of ⇢ going to infinity and

the associated sequence of T
 

(⇢). Since T
 

(⇢) < T
f

(⇢) < T
f

(0), the sequence of T
 (⇢)

is bounded

and, therefore, it has at least one accumulation point, T
 (1)

. At each point along the sequence, T
 

(⇢)

maximizes Q
u

(⇢). Using equation (42) to write the corresponding first–order condition, Q0
T

 

(⇢)

= 0,

we obtain after rearranging that

Q
T

 

(⇢)

(⇢) =
s� µ

h,T

 

(⇢)

1� µ
h,T

 

(⇢)

= Q
T

 

(⇢)

(1) � Q
T

⇤
 

(⇢).

where T ⇤
 

denotes the unique maximizer of Q
u

(1). Letting ⇢ go to infinity on both sides of the

equation, we find

Q
T

 

(1)

(1) � Q
T

⇤
 

(1).
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But since T ⇤
 

is the unique maximizer of Q
u

(1), T
 

(1) = T ⇤
 

. Therefore, T
 

(⇢) has a unique accu-

mulation point, and converges towards it.

B.1.9 Proof of Lemma 15

Given that �
u

= (1� µ
h,u

)1/�Q
u

, we have

�0
u

= �

�

�
(1� µ

h,u

)1/�Q
u

+ (1� µ
h,u

)1/�Q0
u

.

Using the formula (42) for Q0
u

, in Lemma 12, we obtain:

sign
⇥

�0
u

⇤

= sign
h

�

�

�
Q

u

+Q0
u

i

= sign



�

�

�
Q

u

 

I{ 
u

=0}(1� µ
h,0

)1+1/� +

Z

u

 

u

⇢e⇢t(1� µ
h,t

)1+1/� dt

!

+ ⇢e⇢u
⇣

s� µ
h,u

� (1� µ
h,u

)1+1/�Q
u

⌘

�

. (64)

We first show:

R4. �0
u

< 0 for u close to zero.

To show this result, first note that when u is close to zero,  
u

= 0 and, by Lemma 9, Q
0

= Q
0

=
s�µ

h,0

1�µ

h,0)
1+1/� . Plugging in into (64), one obtains

sign
⇥

�0
0

⇤

= �

�

�
(s� µ

h,0

) < 0. (65)

Since  
u

= 0 for u close to zero, the results follows by continuity. Next, we show:

R5. Suppose �0
u0

= 0 for some u
0

2 (0, T
f

]. Then, �
u

is strictly decreasing at u
0

.
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For this we first manipulate (64) as follows:

sign
⇥

�0
u

⇤

=sign



�

�

�

�
u

(1� µ
h,u

)1/�

 

I{ 
u

=0}(1� µ
h,0

)1+1/� +

Z

u

 

u

⇢e⇢t(1� µ
h,t

)1+1/� dt

!

+

⇢e⇢u
�

s� µ
h,u

� (1� µ
h,u

)�
u

�

�

=sign



�

�

�
�

u

 

I{ 
u

=0}e
�⇢u

✓

1� µ
h,0

1� µ
h,u

◆

1+1/�

+

Z

u

 

u

⇢e�⇢(u�t)

✓

1� µ
h,t

1� µ
h,u

◆

1+1/�

dt

!

+ ⇢

✓

s� µ
h,u

1� µ
h,u

��
u

◆�

=sign

"

�

�

�
�

u

 

I{ 
u

=0}e
[�(1+ 1

�

)�⇢]u +

Z

u

 

u

⇢e[�(1+
1
�

)�⇢](u�t) dt

!

+ ⇢ (1� (1� s)e�u ��
u

)

#

=sign



�

�

�
�

u

✓

I{ 
u

=0}e
[�(1+ 1

�

)�⇢]u +

Z

u� 
u

0

⇢e[�(1+
1
�

)�⇢]t dt

◆

+ ⇢ (1� (1� s)e�u ��
u

)

�

and where we obtain the first equality after substituting in the expression for Q
u

; the second equality

after dividing by (1�µ
h,u

)e⇢u; the third equality by using the functional form 1�µ
h,t

= (1�µ
h,0

)e��t;

and the fourth equality by changing variable (x = u� t) in the integral. Now suppose �0
u

= 0 at some

u
0

. From the above we have:

H
u0 ⌘ �

�

�
�

u0

✓

I{ 
u0

=0}e
[�(1+ 1

�

)�⇢]u0 +

Z

u0� 
u0

0

⇢e[�(1+
1
�

)�⇢]t dt

◆

+ ⇢ (1� (1� s)e�u0
��

u0) = 0.

If (1� µ
h,0

)1/�Q
u0 < 1 then  

u0
= 0 and  0

u0
= 0. Together with the fact that �0

u0
= 0, this implies

that

H 0
u0

= �

�

�
�

u0�

✓

1 +
1

�

◆

e[�(1+
1
�

)�⇢]u0
� ⇢(1� s)�e�u0 < 0.

If (1� µ
h,0

)1/�Q
u0 = 1, then  

u0
= 0 and the left-derivative  0

u

�
0
= 0, so the same calculation implies

that H 0
u

�
0
< 0. If (1� µ

h,0

)1/�Q
u0 > 1 we first note that, around u

0

,

Q
u

=
⇣

1� µ
h, 

u

⌘�1/�

) �
u

=

✓

1� µ
h, 

u

1� µ
h,u

◆

1/�

= e��
 

u

�u

� .

So if �0
u0

= 0, we must have that  0
u0

= 1. Plugging this back into H 0
u0

we obtain that H 0
u0

=

�⇢(1� s)�e�u0 < 0. Lastly, if (1�µ
h,0

)1/�Q
u0 = 1, then the same calculation leads to  

u

+
0
= 1 and so

H
u

+
0
< 0. In all cases, we find that H

u0 has strictly negative left- and right-derivatives when H
u0 = 0.

Thus, whenever it is equal to zero, �0
u

is strictly decreasing. With Result R5 in mind, we then obtain:

R6. �0
u

cannot change sign over (0, T
f

].
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Suppose it did and let u
0

be the first time in (0, T
f

] where �0
u

changes sign. Because �0
u

is

continuous, we have �0
u0

= 0. But recall that �0
u

< 0 for u ' 0, implying that at u = u
0

, �0
u

crosses

the x-axis from below and is therefore increasing, contradicting Result R5.

B.1.10 Proof of Lemma 16

With known preferences:

J?(s) =

Z

+1

0

I{u<T

s

}e
�ru

✓

1�
1� s

1� µ
h,0

e�u
◆

�

du.

Since, by definition e�Ts

1�s

1�µ

h,0
= 1, we have that T

s

! 1 when s goes to 1, and the integrand of J?(s)

converges pointwise towards e�ru. Moreover, the integrand is bounded by e�ru. Therefore, by an

application of the Dominated Convergence Theorem, J?(s) goes to
R

+1
0

e�ru du = 1/r when s ! 1.

With preference uncertainty, for u > 0, we note that Q
u

(s) is an increasing function of s and is

bounded above by (1 � µ
h,u

)�1/�. Letting s ! 1 in the market clearing condition (40) then shows

that Q
u

! (1 � µ
h,u

)�1/� > 1. Using that T
f

> T
s

goes to +1 when s ! 1, we obtain that the

integrand of J(s) goes to e�ru. Moreover, the integrand is bounded by e�ru. Therefore, by dominated

convergence, J(s) goes to 1/r.

B.1.11 Proof of Lemma 17

In the market with continuous updating, we can compute:

J?0(s) =

Z

T

s

0

e�ru

�e�u

1� µ
h,0

✓

1�
1� s

1� µ
h,0

e�u
◆

��1

du+
@T

s

@s

✓

1�
1� s

1� µ
h,0

e�Ts

◆

�

. (66)

The second term is equal to 0 since e�Ts

1�s

1�µ

h,0
= 1. After making the change of variable z = T

s

� u,

keeping in mind that e�Ts

1�s

1�µ

h,0
= 1, we obtain:

J?0(s) =

Z

T

s

0

e(r��)(z�T

s

)

�

1� µ
h,0

�

1� e��z
�

��1

dz. (67)

We then compute an approximation of J?0(s) when s ! 1.

When r > �. In this case we write:

J?0(s) =

Z

T

s

/2

0

e(r��)(z�T

s

)

�

1� µ
h,0

�

1� e��z
�

��1

dz +

Z

T

s

T

s

/2

e(r��)(z�T

s

)

�

1� µ
h,0

�

1� e��z
�

��1

dz.

The first term is less than e�(r��)T
s

/2

�

1�µ

h,0

R

T

s

/2

0

[1� e��z] dz. The integrand goes to 1 as z goes

to infinity and so, by Cesàro summation, the integral is equivalent to T
s

/2, which is dominated by

e�(r��)T
s

/2 as s ! 1 and T
s

! 1. Thus, the first term converges to zero as s ! 1. The second term
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can be written:

�

Z 1

0

I{uT

s

/2}e
�(r��)u

✓

1�
1� s

1� µ
h,0

e�u
◆

��1

du.

Since T
s

goes to infinity when s goes to 1, the integrand goes to , and is bounded by, e�(r��)u(1 �

q

1�s

1�µ

h,0
)��1. Therefore, by dominated convergence, J?0(s) goes to �

(1�µ

h,0)(r��)
.

When r = �. Then we have:

J?0(s) = �

Z

T

s

0

�

1� e��z
�

��1

dz.

The integrand goes to 1 when T
s

goes to infinity. Thus, the Cesàro mean I 0(s)/T
s

converges to �, i.e.:

J?0(s) ⇠ �T
s

= �

�

�
log

✓

1� s

1� µ
h,0

◆

.

When r < �. In that case:

J?0(s) = �e(��r)T

s

Z

+1

0

I{z<T

s

}e
�(��r)z

�

1� e��z
�

��1

dz,

The integrand in the second line goes to, and is bounded by, e�(��r)z(1�e��z)��1, which in integrable.

Therefore, by dominated convergence, the integral goes to
R

+1
0

e�(��r)z (1� e��z)��1

dz when s goes

to 1. Finally, using that e��Ts = 1�s

1�µ

h,0
, we obtain:

J?0(s) ⇠ �

✓

1� µ
h,0

1� s

◆

1�r/�

Z

+1

0

e�(��r)z

�

1� e��z
�

��1

dz.

B.1.12 Proof of Lemma 18

Throughout all the proof and the intermediate results therein, we work under the maintained assump-

tion

� + �/� � ⇢ > 0 () � + �(� � ⇢) > 0, (68)

which is without loss of generality since we want to compare prices when � is close to zero. We start

by di↵erentiating J(s):

J 0(s) =
@T

f

@s
e�rT

f e��TfQ�

T

�
f

+

Z

T

f

0

e�rue��u
@Q�

u

@s
du >

Z

T2

T1

e�rue��u
@Q�

u

@s
du,

where the inequality follows from the following facts: the first term is zero since Q
T

�
f

= 0; the integrand

in the second term is positive since Q
u

is increasing in s by equation (40); and 0 < T
1

< T
2

< T
f

are

68



defined as in the paragraph following Lemma 11, as follows. We consider that s is close to 1 so that

Q
u

> 1 for some u. Then, T
1

< T
2

are defined as the two solutions of Q
T1 = Q

T2 = 1. Note that

T
1

and T
2

are also the two solutions of Q
T1

= Q
T2
. Because both Q

u

and Q
u

are hump shaped, we

know that Q
u

and Q
u

are strictly greater than one for u 2 (T
1

, T
2

), and less than one otherwise. For

u 2 (T
1

, T
2

), we can define  
u

> 0 as in the paragraph following Lemma 11: Q
u

= (1�µ
h 

u

)�1/�. By

construction,  
u

2 (0, u), and, as shown in Section B.1.13:

@ 
u

@s
=
� + �(� � ⇢)

�⇢

(1� e�⇢u) e�u

e�(⇢��)(u� 
u

)

� e�(�/�)(u� 
u

)

. (69)

Plugging Q�

u

= (1� µ
h 

u

)�1 = e� u in the expression of J 0(s), we obtain:

J 0(s) >
� + �(� � ⇢)

⇢

Z

T2

T1

e�ru

(1� e�⇢u) e� u

e�(⇢��)(u� 
u

)

� e�(�/�)(u� 
u

)

du. (70)

When r > �. For this case fix some u > 0 and pick s close enough to one so that that Q
u

> 1. Such

s exists since, as argued earlier in Section B.1.10, for all u > 0, Q
u

! (1� µ
h,u

)�1/� as s ! 1. Since

the integrand in (70) is strictly positive, we have:

J 0(s) >
� + �(� � ⇢)

⇢

Z

u

0

I{u>T1}e
�ru

(1� e�⇢u) e� u

e�(⇢��)(u� 
u

)

� e�(�/�)(u� 
u

)

du

>
� + �(� � ⇢)

⇢

1

e|⇢��|(u� u

)

� e�(�/�)(u� 
u

)

Z

u

0

I{u>T1}e
�ru

�

1� e�⇢u
�

e� u du.

where the second line follows from the fact, proven is Section B.1.13, that u� 
u

is strictly increasing

in u when  
u

> 0. In Section B.1.13 we also prove that T
1

! 0 and that, for all u > 0,  
u

! u when

s goes to 1. Therefore, in the above equation, the integral remains bounded away from zero, and the

whole expression goes to infinity.

When r  �. In this case we make the change of variable z ⌘ T
s

� u in equation (70) and we use

that e��Ts = 1�s

1�µ

h,0
:

J 0(s) >
� + �(� � ⇢)

⇢

Z

T

s

�T1

T

s

�T2

✓

1� s

1� µ
h,0

◆

r

�

erz
�

1� e�⇢(Ts

�z)

�

e� T

s

�z

e�(⇢��)(T
s

�z� 
T

s

�z

)

� e�(�/�)(T

s

�z� 
T

s

�z

)

dz

>
� + �(� � ⇢)

⇢

Z

+1

0

I{max{T
s

�T2,0}<z<T

s

�T1}

✓

1� s

1� µ
h,0

◆

r

�

erz
�

1� e�⇢(Ts

�z)

�

e� T

s

�z

e�(⇢��)(T
s

�z� 
T

s

�z

)

� e�(�/�)(T

s

�z� 
T

s

�z

)

dz.

where the second line follows from the addition of the max operator in the indicator variable and the
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fact that the integrand is strictly positive. We show in Section B.1.13 that, if  
T

s

�z

> 0, then:

e� T

s

�z >

8

>

<

>

:

⇣

�+�(��⇢)
⇢

⌘

�

⇢��
⇣

1�s

1�µ

h,0

⌘�1

e��z if ⇢ 6= �,

e�(1+�)

⇣

1�s

1�µ

h,0

⌘�1

e��z if ⇢ = �,
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and:

⇣

e�(⇢��)(T
s

�z� 
T

s

�z

)

� e�(�/�)(T

s

�z� 
T

s

�z

)

⌘�1

>
min{�, ⇢}

� + �(� � ⇢)
. (72)

When � 6= ⇢, we obtain:

J 0(s) >

✓

� + �(� � ⇢)

⇢

◆

�

⇢��
min {�/⇢, 1}

✓

1� s

1� µ
h,0

◆�1+

r

�

⇥

Z

+1

0

I{max{T
s

�T2,0}<z<T

s

�T1}e
�(��r)z

⇣

1� e�⇢(Ts

�z)

⌘

dz. (73)

Consider first the case � < r. In Section B.1.13 we show that T
s

� T
2

< 0 when s is close to 1 and

that T
1

goes to 0 when s goes to 1. Since T
s

goes to infinity, these facts imply that the integrand goes

to, and is bounded above by, e�(��r)z when s ! 1. Therefore, by dominated convergence, the integral

goes to 1/(� � r). A similar computation obtains when � = ⇢.

Consider now the case � = r. When � 6= ⇢, equation (73) rewrites:

J 0(s) >

✓

� + �(� � ⇢)

⇢

◆

�

⇢��
min{�/⇢, 1}

Z

T

s

�T1

max{T
s

�T2,0}

⇣

1� e�⇢(Ts

�z)

⌘

dz

=

✓

� + �(� � ⇢)

⇢

◆

�

⇢��
min{�/⇢, 1}

 

T
s

� T
1

�max{T
s

� T
2

, 0}�
e�⇢T1

� e�⇢min{T2,Ts

}

⇢

!

.

Since T
s

� T
2

< 0 and T
1

! 0 when s goes to 1, the last term in large parenthesis is equivalent to

T
s

= log((1� s)�1)/� when s goes to 1. A similar computation obtains when � = ⇢.

B.1.13 Intermediate results for the proofs of Lemma 16, 17 and 18

Derivative of the  
u

function when  
u

> 0. When  
u

> 0, time–⌧
u

low–valuation investors

hold q
⌧

u

,u

= 1 if ⌧
u

<  
u

, and q
⌧

u

,u

= (1 � µ
h,⌧

u

)1/�(1 � µ
h 

u

)�1/� if ⌧
u

>  
u

. The market clearing

condition (40) rewrites:

1� µ
h,0

+

Z

 

u

0

⇢e⇢t(1� µ
h,t

) dt+

Z

u

 

u

⇢e⇢t(1� (1� µ
h,0

)µ
h,t

)1+1/�(1� µ
h 

u

)�1/� dt

=s� µ
h,0

+

Z

u

0

⇢e⇢t(s� µ
h,t

) dt. (74)
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We di↵erentiate this equation with respect to s:

@ 
u

@s

�

�

Z

u

 

u

e⇢t(1� µ
h,t

)1+1/�(1� µ
h 

u

)�1/� dt =

Z

u

0

e⇢t dt.

After computing the integrals and rearranging the terms we obtain equation (69).

Limits of T
1

and T
2

when s ! 1. For any u > 0, when s is close enough to 1 we have Q
u

> 1 and

thus T
1

< u < T
2

. Therefore T
1

! 0 and T
2

! 1, when s ! 1. To obtain that T
2

> T
s

when s is

close to 1, it su�ces to show that Q
T

s

> 1 for s close to 1. After computing the integrals in equation

(41) and using that e��Ts = 1�s

1�µ

h,0
, we obtain:

Q
T

s

=
N

s

D
s

,

where

N
s

=

8

>

<

>

:

(1� s) �

⇢�� + �

��⇢(1� µ
h,0

)
⇣

1�s

1�µ
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⌘
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if ⇢ 6= �

(1� s) log
⇣

1�µ

h,0

1�s

⌘

if ⇢ = �

D
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=
�(1� µ

h,0
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(

�

✓

1 +
1

�

◆✓

1� s

1� µ
h,0

◆

⇢/�

� ⇢

✓

1� s

1� µ
h,0

◆

1+1/�

)

.

When �  ⇢, Q
T

s

goes to infinity when s goes to 1. When � > ⇢, Q
T

s

goes to �+�(��⇢)
�(��⇢)(1�µ

h,0)
1+1/� > 1.

Proof that u�  
u

is strictly increasing in u when  
u

> 0. Rearranging (74), we obtain:

1� s

1� µ
h,0

e⇢u =

Z

u

 

u

⇢e(⇢��)t dt� e
�

�

 

u

Z

u

 

u

⇢e[⇢��(1+
1
�

)]t dt.

When ⇢ 6= �, calculating the integrals and reorganizing terms leads to

1� s

1� µ
h,0

e�u

⇢
=

 

1

⇢� �
+

1

�
�

1 + 1

�

�

� ⇢

!

⇣

1� e�(⇢��)(u� 
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�

1

�
�

1 + 1
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� ⇢

⇣

1� e�
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�

(u� 
u

)

⌘

(75)

Taking the derivative of the right-hand side with respect to u�  
u

we easily obtain that it is strictly

increasing in u �  
u

, given our parameter restriction that � > �(� � ⇢). Since the right-hand side is

strictly increasing in u, then u�  
u

is a strictly increasing function of u. When ⇢ = �, the left-hand

side stays the same and the right-hand side becomes

u�  
u

+
�

�

⇣

e�
�

�

(u� 
u

)

� 1
⌘

which is strictly increasing in u�  
u

as well, implying that u�  
u

is a strictly increasing function of

u.
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Proof that  
u

! u when s ! 1. As noted earlier in Section B.1.10, for any u, Q
u

! (1�µ
h,u

)�1/�

as s ! 1. Together with the defining equation of  
u

, Q
u

= (1�µ
h 

u

)1/�, this implies that  
u

! u as

s ! 1.

Proof of equation (71). When � 6= ⇢, we make the change of variable z ⌘ T
s

� u in the market

clearing condition (75):

e��z

⇢
=

1

⇢� �
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�

1 + 1
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), (76)

where we have used that e��Ts = 1�s

1�µ

h,0
. This implies that:
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)

Using e��Ts = 1�s

1�µ

h,0
and doing some algebra, we arrive at:

⇢
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1 + 1
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� ⇢
⇤e(⇢��) T
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Equation (71) for � 6= ⇢ follows. Finally, when � = ⇢, the same manipulations lead to:

e��z = �
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T
s

� z �  
T

s

�z

�

� � + �e�
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(T

s

�z� 
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)

) 1 > e��z > �(T
s

� z �  
T

s
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)� �.

Taking exponentials on both sides, and using e��Ts = 1�s

1�µ

h,0
, lead to equation (71) for � = ⇢.

Proof of equation (72). When � 6= ⇢, we write equation (76) as follows:
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When ⇢ > �, we add �
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), which is negative, to the right–hand side:
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where we can keep the inequality the same because ⇢ > �. Equation (72) when ⇢ > � follows.

When ⇢ < �, we can also add �

1

⇢�� ⇥ e�(�/�)(T

s

�z� 
T

s

�z

) to the right hand side. But since this

term is now negative, we obtain:
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where we use e��z < 1 to move from the second to the third line. Equation (72), when ⇢ > �, follows.

Finally, when � = ⇢, equation (72) follows since 1� e�(�/�)(T

s

�z� 
T

s

�z

) < 1.
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B.2 Trading profits

Consider, in the analytical example, a trader who learns at some time T that she has a high valuation.

Assume for simplicity that T < T
f

so that the investor find it optimal to hold 1 unit at this time. The

trading profits can be defined as:

⇧ = �

Z

T

0

p
t

dq
t

.

After integrating by part we obtain:

⇧ = �p
T

q
T

+ p
0

s+

Z
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0

ṗ
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q
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dt = �p
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0

ṗ
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q
t

dt
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0

+

Z
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0

ṗ
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dt+ p
0
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T

0

ṗ
t

q
t

dt = �p
0

(1� s) +

Z

T

0

ṗ
t

[q
t

� 1] dt.

Now in term of holding plans this can be written:

⇧ = �p
0

(1� s) +

Z

T

0

ṗ
u

[q
`,⌧

u

,u

� 1] du < 0.

Note that trading profits are negative. This makes sense because, in this model, every trader who

ends up purchasing before T
f

is a net buyer: she starts with s and ends with 1. This is in contrast

with models of liquidity provision, in which trading profits are positive.

Note also that, since traders are net buyers, the best way to minimize cost would be to buy

immediately 1� s at time zero. Of course, although this maximizes trading profits, this strategy does

not maximize inter temporal utility, because it requires the trader to incur large holding costs during

the liquidity shock.

Next, let us calculate the expectations of ⇧ conditional on the event that there are exactly n

updates over [0, T ). For this we need to figure out the distribution of ⌧
u

conditional on n updates over

[0, T ). Note first that:

Proba(⌧
u

 t ^N
T

= n) =
n

X

k=0

Proba(N
t

= k ^N
u

�N
t

= 0 ^N
T

�N
u

= n� k)

=
n

X

k=0

e�⇢t(⇢t)k

k!
e�⇢(u�t)

e�⇢(T�u)(⇢(T � u))n�k

(n� k)!

=
e�⇢T (⇢T )n

n!

n

X

k=0

Ck

n

✓

t

T

◆

k

✓

T � u

T

◆

n�k

= Proba(N
t

= n)



1�
u� t

T

�

n

.
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Therefore the distribution of ⌧
u

conditional on n updates over [0, T ) is

Pr(⌧
u

 t |N
T

= n) =



1�
u� t

T

�

n

.

One sees that an increase in n creates a first-order stochastic dominance shift in the distribution. This

is intuitive: if there has been lots of updates, then it is more likely that the last update before u is close

to u. Combined with the observation that q
`,t,u

is decreasing in t, this implies that the expectations

of ⇧ conditional on n updates before T is decreasing. This implies that E [⇧ |n, T  T
f

] is decreasing

in n.
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B.3 Private information about common values reduces trading vol-

ume

In general, private information about common values reduces trading volume, because it generates

adverse selection. Below, we illustrate this point in a noisy rational expectations model, adapted from

Grossman and Stiglitz (1980). The main di↵erence is that, while in Grossman and Stiglitz (1980)

there are noise traders, in the present case all investors are rational. Trading occurs, in equilibrium,

because of endowment shocks generating potential gains from trade. This is an important di↵erence

for the analysis of trading volume with private information. Since noise traders do not optimize, they

don’t respond to increased adverse selection.

The model. Let us consider a simple version of Grossman and Stiglitz (1980). There is one asset

with random payo↵ v ⇠ N (0, 1/ 
v

). There are � informed investors and 1 � � uninformed ones, all

with Constant Absolute Risk Aversion (CARA) utility, ↵. Uninformed investors receive no signal and

no endowment. Informed investors observe signal

v +
"

p

 
"

, (77)

and have random endowment s/�, where s ⇠ N (0, 1/ 
s

). As is standard, the common but random

component of the endowment shock prevents uninformed investor from perfectly inferring informed

investors’ information from the asset price. The factor 1/� keeps the aggregate supply equal to s as

we vary the fraction of informed investors.

Equilibrium. To solve the model, we guess and verify that, to an uninformed investor, the price

is observationally equivalent to a signal of the form:

v +
"

p

 
"

�

s

✓
, (78)

for some ✓ > 0 to be determined in equilibrium. Note in particular that the coe�cient on s is negative:

when they receive a larger endowment, the informed investors want to sell more. This puts downward

pressure on the price. But uninformed investors do not know whether the downward pressure originates

from an endowment shock or from adverse information about v. Thus, they will rationally interpret

this negative price pressure as a noisy signal that the fundamental value has gone down.

Straightforward calculations show that the precision of the price signal, (78) is

 
p

=  
"

 
s

✓2

 
s

✓2 + 
"

<  
"

.

Clearly, because of the noisy supply, the precision of the price signal, (78), is lower than that of
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informed investors’ signal, (77). The demand of informed and uninformed investors can be written:

D
I

=
E
I

[v]� p

↵V
I

[v]
�

s

�
, and D

U

=
E
U

[v]� p

↵V
U

[v]
.

Using Bayes’ rule, and keeping in mind that the prior has mean zero, we obtain that the posterior

mean of informed and uninformed investors are

E
I

[v] =
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+ 
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U
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.

The posterior variances of informed and uninformed investors are

V
I

[v] = ( 
v

+ 
"

)�1 , and V
U

[v] = ( 
v

+ 
p

)�1 .

Therefore, the demand of informed and uninformed investors can be written:

D
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Solving for the price in �D
I

+ (1� �)D
U

= 0, we obtain:
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.

After a couple of lines of algebra we see that our guess is verified i↵:

✓ =
� 

"

↵
.

The Volume. The aggregate demand from uninformed investors is

(1� �)D
U

= �

�(1� �) 
v

( 
"

� 
p

)

� 
"

+ (1� �) 
p
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s
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�

s
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.

Without asymmetric information, it would be equal to (1� �)s: indeed, the equilibrium allocation in

this case dictates that there is full risk sharing, and hence that all investors, informed and uninformed,

hold s shares of the assets.24

We would like to know whether this trading volume increases or decreases with asymmetric infor-

24Note that with symmetric information, the equilibrium volume is the same regardless of the level of risk (as
long as it is positive). Indeed, with CARA agents, in the setup considered, the equilibrium allocation prescribes
that agents share risk equally, regardless of their (positive) risk aversion and regardless of the level of risk.
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mation. One sees that there are competing e↵ects. On the one hand, the loading of the order flow,

D
U

, on s, is equal to

(1� �)



1�
 

p

 
"

�

 
v

� 
"

+ (1� �) 
p

+ 
v

< 1� �.

That is, asymmetric information reduces the “fundamental” trading volume associated with hedging

needs. For example, suppose that v = " = 0. Then, when s is positive, the informed investors want to

sell assets, which puts downward pressure on the price. Uninformed investors rationnaly interpret the

low price as a bad signal about the fundamental value of the asset, and reduce their demand relative

to the full information case. In equilibrium, uninformed investors end up purchasing less asset from

informed investors than they would have under symmetric infomaiton.

While there is less trading for fundamental “hedging” motives, there is now some speculative

trading. For example, suppose that v is positive, but " = s = 0. Then both the informed and

the uninformed investors receive a positive signal about the fundamental value of the asset. But

the informed investor views his signal as more precise: hence, if the uninformed investor demand is

positive, the informed demand will be positive as well. Thus, market clearing implies that the price

must adjust so that uninformed demand must be negative, and informed demand must be positive.

Our main result is that:

Proposition 11. The volume is smaller under asymmetric than under symmetric information:
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U
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.

To show this, we start from:
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Substituting in ↵2 = �2 2

"

/✓2:
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Now using the formula for  
p

we have that ✓2 
s

=  
p

/(1� 
p

/ 
"

). Plugging this in we have:
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Clearly, all terms multiplying (1� �)2/ 
s

are less than one, establishing the claim.
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B.4 Information collection e↵ort

In this appendix we study a simple static variant of our model, with three stages: ex-ante banks

choose how much information collection e↵ort to exert, interim banks receive a signal about their

preferences and trade in a centralized market, ex-post banks discover their types and payo↵s realize.

In this context, again, we find that the equilibrium is constrained Pareto e�cient, i.e., both the choice

of e↵ort, and the allocation coincide with the one that a social planner would choose.

B.4.1 Setup

Consider a continuum of banks with utility v(✓, q) for holding an asset in supply s. Assume bank

type can be either high or low, ✓ 2 {✓
`

, ✓
h

} and that the utility function satisfies the same regularity

conditions as in the paper. There are three stages: ex-ante and interim and ex-post. In the first stage

all banks start with endowment equal to s, and they invest in information collection e↵orts. In the

second stage, banks receive a signal about their type and trade assets in a centralized market. In the

third stage, banks discover their types and payo↵s realize.

To model information collection e↵ort, we assume that a bank can choose the probability ⇢ of

knowing its type for sure. Namely, we assume that a bank observes its type exactly with probability

⇢, i.e., it receives the signal s = h if it has a high type, or s = ` if it has a low type. With the

complementary probability, 1� ⇢, the bank observes no signal, which we indicate using the shorthand

s = m. Just as in our main dynamic model, banks who observe s = m face preference uncertainty:

they believe that they have a high type with probability µ, and a low type with probability 1� µ.

Assume for now that all banks choose the same level of e↵ort (we will argue later that this is

without loss of generality). An allocation of asset is a vector {q
s

}

s2{`,m,h}, prescribing that a bank

who observes signal s 2 {`,m, h) holds a quantity q
s

of assets. An allocation is feasible if

⇢ [µq
h

+ (1� µ)q
`

] + (1� ⇢)q
m

= s, (79)

where ⇢ is the level of e↵ort chosen by banks.

B.4.2 Social planning problem

We define the social planning problem in two steps. First, given any level of e↵ort, ⇢, the planner

solves, at the interim stage:

W (⇢) = max
{q

s

}
⇢ [µv(✓

h

, q
h

) + (1� µ)v(✓
`

, q
`

)] + (1� ⇢) [µv(✓
h

, q
m

) + (1� µ)v(✓
`

, q
m

)] ,

subject to (79). At the ex-ante stage, the planner solves:

max
⇢2[0,1]

W (⇢)� C(⇢),
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where C(⇢) is a continuously di↵erentiable and strictly convex function of ⇢. Clearly, since W (⇢) is

continuous by the theorem of the maximum, the ex-ante planner’s problem has a solution.

Next, we show that this solution can be characterized by simple first-order conditions. First,

standard arguments show that the interim problem is solved by:

q
h

= D(1, ⇠), q
`

= D(0, ⇠), and q
m

= D(µ, ⇠), (80)

where D(µ, ⇠) is a demand function defined exactly as in the main body of the paper, and ⇠ solves:

⇢ [µD(1, ⇠) + (1� µ)D(0, ⇠)] + (1� ⇢)D(µ, ⇠) = s. (81)

Now consider W (⇢), the social value of choosing e↵ort, at the ex-ante stage. Our main result is:

Proposition 12. The planner’s problem is solved by the unique ⇢? such that

W 0(⇢?)  0 if ⇢? = 0,W 0(⇢?) = 0 if ⇢? 2 (0, 1), and W 0(⇢?) � 0 if ⇢? = 1, (82)

where

W 0(⇢) = [µv(✓
h

, q
h

) + (1� µ)v(✓
`

, q
`

)]� [µv(✓
h

, q
m

) + (1� µ)v(✓
`

, q
m

)] (83)

� ⇠ [µq
h

+ (1� µ)q
`

� q
m

] ,

and {q
s

} and ⇠ jointly solve (80) and (81) given ⇢.

The expression for W 0(⇢) is obtained by an application of the envelope theorem. Clearly, condition

(83) is necessary for optimality. To show uniqueness and su�ciency, we take another round of derivative

to obtain that:

W 00(⇢) = �

d⇠

d⇢
[µq

h

+ (1� µ)q
`

� q
m

] =
[µq

h

+ (1� µ)q
`

� q
m

]2

⇢ [µD
⇠

(1, ⇠) + (1� µ)D
⇠

(0, ⇠)] + (1� ⇢)D⇠(µ, ⇠)
< 0.

In the above, the first equality follows because, when {q
s

} are given by (79), then marginal utilities

are equal to ⇠. The second equality follows by calculating d⇠/d⇢ explicitly using the implicit function

theorem.

Finally, we argue that our restriction that banks choose the same level of e↵ort is without loss of

generality. Notice indeed that, with heterogeneous ⇢, the social welfare in the interim stage, W , only

depends on the average ⇢. Given convexity of the cost function, the planner strictly prefers to have

all banks choose a common level of e↵ort.

B.4.3 Equilibrium

We now study the equilibrium choice of information collection e↵ort and show that it coincides with

the social optimum. Suppose that other banks exert a level of information collection e↵ort equal to
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⇢̄. As in the paper, the interim equilibrium is socially optimal given ⇢̄. This implies that the interim

equilibrium price is the unique solution ⇠̄ of (81), and the asset holdings are given by (80). Ex-ante,

each individual bank chooses its level of information collection e↵ort, ⇢, taking as given the information

collection of others, ⇢̄, which determines the interim equilibrium price, ⇠̄. To an individual bank, the

value of choosing ⇢ is:

V (⇢ | ⇠̄) = max
{q

s

}
⇢ [µv(✓

h

, q
h

) + (1� µ)v(✓
`

, q
`

)] + (1� ⇢) [µv(✓
h

, q
m

) + (1� µ)v(✓
`

, q
m

)]

� ⇠̄ {⇢ [µq
h

+ (1� µ)q
`

] + (1� ⇢)q
m

} .

A bank’s ex-ante e↵ort choice problem is:

max
⇢2[0,1]

V (⇢ | ⇠̄)� C(⇢).

An ex-ante equilibrium is defined as a pair (⇢̄, ⇠̄) such that: (i) ⇠̄ is an interim equilibrium price given

⇢̄, and (ii) ⇢̄ solves the bank’s ex-ante e↵ort choice problem given ⇠̄. Our main result is:

Proposition 13. There exists a unique ex-ante equilibrium. In this equilibrium, bank’s e↵ort collection

choice is socially optimal, i.e., ⇢̄ = ⇢?.

To show this proposition, we first use the envelope theorem to assert that:

V 0(⇢ | ⇠̄) = [µv(✓
h

, q
h

) + (1� µ)v(✓
`

, q
`

)]� [µv(✓
h

, q
m

) + (1� µ)v(✓
`

, q
m

)]

� ⇠̄ {µq
h

+ (1� µ)q
`

� q
m

} ,

where {q
s

} solves (80) given ⇠̄. Since {q
s

} only depend on ⇠̄, which a bank takes as given, we have

that V 00(⇢ | ⇠̄) = 0. Since the cost function C(⇢) is strictly convex, it thus follows that the ex-ante

e↵ort choice problem is strictly concave, and its solution is uniquely characterized by the first-order

condition. Clearly, one sees that the equilibrium condition coincides with the optimality condition of

the planning problem.

Notice again that we need not worry about asymmetric equilibria in which banks choose heteroge-

nous levels of e↵orts: given the price that will prevail at the interim stage, a bank’s e↵ort choice

problem is strictly concave, so it has a unique maximizer.

To illustrate the proposition we consider the following numerical example. We use iso-elastic

preferences v(✓, q) = ✓q1��/(1 � �), and we set � = 0.5, s = 0.5, ✓
h

= 1, and ✓
`

= 0.1. We assume

that µ = 0.5 and that the cost of e↵ort is:

C(⇢) = c
⇢1+�

1 + �
,

where � = 0.1 and the constant c is chosen so that the planner’s problem is maximized at ⇢? = 0.5.

In Figure 6, the social value of information collection e↵ort, W (⇢) � C(⇢), is shown as the plain red
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Figure 6: The social value (plain red) and private value
(dashed blue) of information collection e↵ort.

curve. The individual bank’s private value of recovery e↵ort given the equilibrium price ⇠? generated

by ⇢?, V (⇢ |⇠?) � C(⇢), is the dashed blue curve. One sees that the social value of e↵ort di↵ers from

the social value. In particular, the social value is more concave than the private value: this is because

the planner’s value takes into account the impact of changing ⇢ on the (shadow) price of the asset,

⇠, while an individual bank does not. However, one sees that the envelope theorem ensures that the

private and social value coincide and are tangent to each other at ⇢ = ⇢?.
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B.5 Finite number of traders

In this appendix we o↵er some numerical calculations of an equilibrium when there is a finite number of

traders, with and without preference uncertainty. We describe the evolution of traders’ asset holdings

and of the holding cost. Our calculations reveal that our main excess volume result continues to

hold when there is a finite number of traders. In addition, since idiosyncratic preference shocks and

updating times no longer average out, the model features a new source of holding cost volatility. Our

calculations suggests that, relative to the known preference case with the same finite number of traders,

preference uncertainty tends to mitigate this new source of volatility.

We consider a finite number N of traders but otherwise keep the model exactly as in the text. In

particular, we continue to assume that traders behave competitively, as price takers. Studying price

impact, along the line of Vayanos (1999) or Rostek and Weretka (2011) would introduce additional

technical di�culties that go beyond the main objective of this appendix. Under price taking, the

demand of trader i 2 {1, . . . , N} at time u remains equal to D(⇡
⌧

i

u

,u

, ⇠
u

), where ⌧ i
u

denotes the last

updating time of trader i 2 {1, . . . , N} before the current time, u. What is di↵erent is the market

clearing condition, which becomes:

1

N

N

X

i=1

D(⇡
⌧

i

u

,u

, ⇠
u

) = s.

One sees that, each trader’s updating time before recovery becomes an aggregate shock: it changes

that trader’s demand and thus moves the price discretely.

Figure 7 shows the equilibrium holdings along a particular sample path of preference shocks and

updating times. The number of traders is set to N = 5 and otherwise the parameters are the same

as in our main parametric calculations. Equilibrium objects under preference uncertainty and known

preferences are depicted by plain blue lines and dashed red lines, respectively. One sees clearly from

the figure that the updating times of others become aggregate shocks and cause every trader to change

its holdings. This is an additional source of trading volume, above and beyond the one identified in

the continuum-of-traders case.

Figure 8 shows the cumulative volume along this particular sample path of shocks (left panel),

as well as the average volume across 10, 000 sample paths (right panel). Both figures indicate that,

just as in our main model, cumulative volume is larger with preference uncertainty than with known

preferences.

Figure 9 shows the holding cost for the same particular sample path of shocks (left panel) as well as

the average holding cost across 10,000 sample paths of shocks. One sees clearly from both panels that

preference uncertainty tends to raise the holding cost at the inception of the liquidity shock, because

traders who still have a low valuation believe they may have switched to a high valuation. One also

sees that the full recovery is delayed, as traders need to wait for an updating time before being certain

that they have a high valuation.

Finally, one may wonder what is the impact of having a finite number of traders on holding cost
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Figure 7: Holdings of 5 traders along a sample path of
shocks, for known preferences (dashed red) vs. uncertain pref-
erences (plain blue).

volatility, with and without preference uncertainty. One sees intuitively that, with known preferences,

there are larger upward changes in holding costs. With preference uncertainty, there are many small

changes in holding costs, upward and downward. Figure 10 confirms this observation by calculating

the volatility of the percentage di↵erence between the holding cost and the average holding cost across

10,000 simulations. The volatility with known preferences is higher, and peaks sooner, reflecting the

large change in holding cost arising when su�ciently many traders have switched to high.
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Figure 8: Cumulative trading volume along a sample path
of shocks (left panel) and average cumulative trading volume
across 10,000 sample paths of shocks, for known preferences
(dashed red) vs. uncertain preferences (plain blue).
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Figure 9: Holding cost along a sample path of shocks (left
panel) and average holding cost across 10,000 sample paths
of shocks, for known preferences (dashed red) vs. uncertain
preferences (plain blue).
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Figure 10: Volatility of holding costs across 10,000 sam-
ple paths of shocks, for known preferences (dashed red) vs.
uncertain preferences (plain blue).
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